

FADOMAS

Technical Presentation

Vassilis Papataxiarhis Co-Founder, CEO vpap@intellia.gr

We automate Predictive Maintenance

Data Provider: iO + 75

the Company

- Est. in 2016
- Data-driven start-up focusing on Al / ML
- Large Portfolio in industrial collaborations
- Predictive maintenance on
 - Ship machinery
 - Material flow logistics

intellia

MLSpecialists & Data Scientists

10+ EU/national R&D projects

15+ MLapplications

in the interpretation of complex data

Complexity of ML workflows

the Need

What if we could simplify ML?

Automate ...

Model selection

Evaluate various models and choose the best one for your data

Configuration

Fine-tume the optimal set of parameters for your model

Data Featurization

Data cleaning, Missing Value Substitution, Transform data, etc.

FADOMAS SaaS - How it works

What FADOMAS provides

"FADOMAS starts where rule-based automation ends"

- Functionality (the ML workflow)
 - Automated
 - Leaderboard of candidate solutions
 - Versatility (types of problems)
 - Time-Series forecast, Classification, Anomaly detection
 - Extendable pool of algorithms
- Flexibility (customization and control power)
 - Support of industrial standards (IEEE C37.1-2007 for SCADA, OGC SOS / O&M / SensorML
 - OpenAPI
 - Ability to support different sensor data formats (e.g., JSON, XML)
 - Scalability (large problems in terms of size)
 - Spark Cluster
 - Kubernetes
 - Microservices Architecture
- Transparency/Trust (analyze the process)
 - Model explanation
- Ease of use (free, GUI, APIs)

the Architecture

the Algorithms

WILL IT FAIL?	WILL IT FAIL FOR REASON X?	AFTER HOW LONG WILL IT FAIL?	IS THE BEHAVIOUR ANOMALOUS?	WHAT WILL BE THE FUTURE VALUE?
CLASSIFICATION	MULTICLASS CLASSIFICATION	REGRESSION	ANOMALY DETECTION	TIME SERIES FORECASTING
RNN, LSTM	RNN, LSTM	RNN, LSTM	AutoEncoder	Prophet
Deep Neural Classification	Deep Neural Classification	DNN regression	Anomaly MASF	Neural Prophet
Traditional ML: Random Forest, SVM, Decision Trees, GBT	Random Forest Decision Trees, Hidden Markov Chain	Random Forest Regression	Conditional AutoEncoder	
	¹ Partial Matching, Markov Models, Statistical Process Control (CUSUM, Shewhart			

¹V. Papataxiarhis, S. Hadjiefthymiades, "Event correlation and forecasting over high-dimensional streaming sensor data", 2018 IEEE 14th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob 2018), Limassol, Cyprus, October 15–17, 2018.

the Data Governance

- No use of sensitive data BUT industrial data should be secured.
- EXPERIMENT phase
 - Make use of the REACH infrastructure.
 - Data used only for training
 - Data visibility and control at all steps.
 - Authorised access to data
 - Compliance with EU regulations including GDPR
- As a next step
 - Attribute-based usage control
 - Become part of the Federated GAIA-X ecosystem
 - Validate DIN SPEC 27070 standardised Reference Architecture with clients

Quality Assurance & Risk Assessment

- Agile Development
- Automated CI/CD
 - static analysis
 - exhaustive testing
 - coverage
 - security checks
- Profiling & Logging
- Monitoring
- Detailed documentation

Risk	Low quality of results – overfitting/underfitting								
Impact	High	Likeliho	od Low		Phase	TEST			
Mitigation	Extend toolkit with appropriate algorithms/tools, extend experimentation								
	and testing to modify default parameters/hyper-parameters.								
Risk High response times may result in outdated predictions									
Impact	t High Likelihood Medium Phase DES					ESIGN			
Mitigation	Extend forecasting, exploit queueing system to improve performance.								
Risk Inability to handle (very) Big Data – System crash									
Impact	Medium	Likelihood	Medium	Phase	DEPLOY				
Mitigation	Scale-up policies/load balancing strategies. Use of processing/storage								
	resources is re-examined. Dimensionality reduction may take place.								

Marilena Athanasiou — Data Scientist

Dimitris Katris — Data Engineer, Researcher

the Team

Vassilis Papataxiarhis — co-Founder, CEO

Michael Loukeris — co-Founder, Marketing

Visualisation and Configuration

Summary

Number of Columns: 12 Number of Rows: 50K Total Size: 100MB

Target Column

Current

Edit additional features

#	Dispositivo	Parametro	Data	Voltage	Active Ene	Active Power	Current
1	e745f62896fb7909fdd347b4f721	Valore medio	16:30:04 12/10/2020	205.8	471.270	12.89	27.51
2	e745f62896fb7909fdd347b4f721	Valore medio	16:31:04 12/10/2020	206.0	471.270	12.97	27.67
3	e745f62896fb7909fdd347b4f721	Valore medio	16:32:04 12/10/2020	206.2	471.270	13.44	28.39
4	e745f62896fb7909fdd347b4f721	Valore medio	16:33:04 12/10/2020	206.0	471.270	13.21	27.88
5	e745f62896fb7909fdd347b4f721	Valore medio	16:34:04 12/10/2020	205.8	471.270	13.24	28.05

Column Names	Data type	count	mean	std	min	max	Missing Values	histogram
Dispositivo	categorical	30	-	-	-	-	0	-
Parametro	categorical	30	-	-	-	-	0	-
Data	datetime	30	-	-	-	-	0	-
Voltage	numerical	30	205.7	205.8	204.8	208.8	0	show
Active Energy	numerical	30	471.274	471.270	471.270	471.276	0	show
Active Power	numerical	30	13.06	13.04	12.89	13.44	0	show
Current	numerical	30	27.44	27.55	27.51	28.39	0	show

DEPLOYMENT

Well done! You successfully deploy your ML model! X

REST API

```
request.json
{

"data": {

"Dispositivo": "e745f62896fb7909fdd347b4f721ce24e0222160a3769b5b.....",

"Parametro": "Valore medio di corrente",

"Data": "16:31:04 12/10/2020",

"Valore": 28.300
}

curl -X POST -H "Content-Type: application/json" \

-H "Authorisation: Bearer YOUR_ACCESS_TOKEN" \

https://mynewcontainer.fadomas.com/projects/models/predict \
-d @request.json
```

VISUALIZE

MONITORING: my_service

Status

V

Total Requests per month

1001

Estimated Cost per month

100\$

Model Healthness

Model Info

Algorithm: Partial Matching

Optimised for: Accuracy

Value: 98%

First Deployed: 19/5/2021

Mean Response Time

100 msec

Predictions

Response Time

Thank you.

`□ 'intellia

Vassilis Papataxiarhis vpap@intellia.gr