
Low Carbon Regional Energy Planning
a system to release the value of big data in energy

Dan Leighton, CEO
dan@agilis.ai

Low resolution data leads to ineffective action and missdirected investment
Current carbon accounting miscalculates emissions by up to 30%

THE PROBLEM

Technical Scope & Challenge

Regional energy systems need to integrate and analyse many very large data
sources to support the zero carbon energy transition by regional grids

Electric, hydrogen based transport, heating
renewable generation, storage and many more

This is key to meeting climate and Green Deal goals by 2050

Investment is being deployed is too slowly at only €200B of required €400B each
year

The problem is not the availability of capital but
the excessively long time it takes to plan Regional Energy Systems

Technical Scope & Challenge

We need to de-silo the energy Data Value Chain

Only then can Regional Low Carbon Energy Systems be built and deployed fast enough to
achieve net zero targets

This means we need:

● Cleaning and ingesting a very large amount of data both energy (network, demand,
generation) and non-energy (socio-demographic, transport, future trends)

● A common analysis framework to access and analyze data - promote best practice in
modelling energy transitions

● Visualization interface for stakeholders to collaborate securely and share common
data models

Technical Scope &
Challenge

Service Layer:
Develop a robust application layer for regional
assessment of carbon emissions to build a more
transparent and accountable energy system

Geospatial Layer:
Enrich datasets with high-resolution locational and
temporal data to allow planning of low carbon technology
rollouts

Energy Model Layer:
Build a common information model and analysis
framework to allow energy models to utilise data in a
common format: de-silo the energy Data Value Chain

Data Layer
Bring together pre-existing datasets to provide a
comprehensive model of the key energy domains

AS PART OF REACH EXPLORE PHASE WE HAVE CONDUCTED INTERVIEWS
WITH MORE THAN 50 INDUSTRY EXPERTS.
THESE ARE THE HARDEST TECHNICAL CHALLENGES THAT THEY IDENTIFIED

1. HIGHLY DIVERSE DATA
APIs, file downloads, CSV, Shapefiles, GeoJson, XML, JSON, Excel
Different coordinates systems and Geospatial references: UK Grid Ref, XY, Lat Lon, WGS84, DHDN

2. VERY LARGE DATA
Energy Datasets are hundreds of GBs or TBs
Aggregating, cleaning and querying is very hard requiring experienced software engineers

3. SLOW DATA
Data on legacy energy systems often delivered on slow APIs
Often data cannot be queried at the resolution required for energy planning

4. UGLY AND UNAVAILABLE DATA
Current energy visualisation tools are often not modern or sufficiently flexible to allow experimenting or
combining of datasets
Browser limits mean mapping and visualising the data on the web is very challenging

A big data platform optimised for the
energy data value chain

OUR SOLUTION

Data Output

OpenAPI /
Swagger
definition

React
dashboard

Visuals
platform:
Deck.gl,
Kepler.gl,
Geomesa

Data
acquisition

Python
functions
integrated
into Apache
Airflow and
NiFi to
acquire
energy data
from data
sources and
retain licence
and privacy
meta data

Data
transform
and load

Python
functions
integrated
into Apache
Airflow/NiFi/
FiWare Draco
to document
and perform
data ingest,
cleanse,
provenance
and version

Data
aggregation
and query

Storage of
aggregated
data for fast
access
e.g. scalable
NoSql,
Hadoop/Hive
cluster, or
optimised
SQL for
defined
datasets

Calculate
Generation &
CO2
Emissions

At each grid
network
node

Calculate
power
imbalance

Between
exporting
and
importing
regions

Calculate
inter-
regional
power flows

Using Three -
phase
Newton
Raphson
iteration to
calculate AC
power flow

Calculate
power flow
carbon
intensity

Matrix of
carbon
intensity
balance at
bus level

Calculate end
node carbon
intensity

Balanced
carbon
intensity of
power
consumed at
each node

Explore and
Train

Principal
Component
Analysis, TSNE
Visualisation
and Neural
Network
Analysis on
historical data

Predictive
modelling

Nowcasting of
immediate
future trends

Historic data
training and
modelling at
hyper local
level

Data update

Modularised
microservices
to update
aggregated
data from
existing and
new APIs

2. Selection of algorithms and tools
- We will only use standard well-established open source tools to ensure no bottlenecks of performance or available developer expertise and no licence restrictions
- Our platform will allow integration of any appropriate network and energy flow model algorithms on any modelling platform

Data Cleanse and Aggregation Energy flow modelling Machine Learning

8

3. Scalability & flexibility of the solution: overview
REACH: CURRENT EXPLORE PHASE PLATFORM ARCHITECTURE AND DATA FLOW
THIS API FIRST ARCHITECTURE HAS BEEN SUCCESSFULLY TESTED AS PART OF THE EXPLORE PHASE TO PROTOTYPE DATA INGESTION PRINCIPLES, MODULAR MODELLING APPROACH AND
SCALABILITY OF ARCHITECTURE

QUERY INGEST
PIPELINE

Data ingest via Query

Ai FRONTEND PLATFORM

Ai BACKEND PLATFORM

Geolocation
Data Store

PostGIS

DATA INGEST PIPELINE
Ingest, clean, reformat

and scheduled update of
data

Energy
Data Store

Apache Druid,
Kafka

RENEWABLES DATA

ENERGY GENERATION
AND DEMAND DATA

BUILDING STOCK DATA, etc.

Private User Authentication

Private User Dataset Recording
- provenance, timestamping

USER INTERFACE

CUSTOMER PRIVATE DATA

RE
ST

 A
ND

 A
PI

FRONT END DATA
INGESTION

Customer data ingest &
parsing pipeline

AP
I

AP
I

FRONT END DATA
PIPELINE

UX data routing pipeline

AP
I

AP
I

PUBLIC MODEL CATALOGUE
Models, Algorithms & Calculations
Zepellin, Julia, Jupyter Notebooks

Building Stock Models, Energy
ModelsAP

I

AP
I

DATA TRANSFORM AND
LOAD

Fetch, transform and load
of cleaned data from

storage
Python Functions,

Jupyter, Apache NiFI,
Airflow

AP
I

AP
I

COMMON DEV COMPONENTS AND DEV
LAYER ARCHITECTURE

Common dev components and resources,
cloud platform tools, etc.

AP
I

AP
I

DEV & CLOUD PLATFORM

DIRECT API FEEDS WHERE
APPROPRIATE

NETWORK TOPOLOGY &
CONSTRAINTS

DATA CATALOGUE

PRIVATE MODEL
AND

DATA VIEWS
CATALOGUE,

PROVENANCE,
VERSIONING

INTEGRATED
ONTOLOGY

Direct
End

Users

Dev/
Data

Scientist
End

Users

DATA CLEANING
TOOLS, ETC.

OBFUSCATION
TOOLS

Any algorithm or model can be implemented
- These are a sample of the algorithms that have been tested in POCs

COMPLETED REACH EXPLORE PHASE TECHNICAL PROTOTYPES

HIGHLY DIVERSE AND LARGE DATA CHALLENGE
• Successfully tested Big Energy Data pipeline
• Successfully ingested, normalised and cleaned >900GB of open energy

related data in addition to the 5GB+ Solar Energy dataset from our Data
Provider

• Successfully automated cleaning of data from all target data formats
• Successfully parsed and converted formats to a common format
• Identified further toolsets to successfully ingest and clean any future

datasets

SLOW, UGLY AND UNAVAILABLE DATA CHALLENGE
• Successfully allowed sub-second query and display of big energy data
• Access speed to Regional and National carbon intensity data 300% faster
• Successfully created initial energy models for Solar Power distribution
• Successfully user tested visualisation platform with end users

STATUS OF PROTOTYPE IN REACH EXPLORE PHASE
We have successfully demonstrated a proof of concept distribution function of our data partner’s National Solar Generation Data against population level data to 5000 person
census groupings. Our proof of concept architecture queries via our API to extract 100 energy objects from a >5GB dataset to calculate and return the mean distribution of
energy for >5300 regions to the visualisation in less than 1 second. We aim to use the lessons learnt to conduct queries of up to 18000 items at similar speed.

END USER MOCKUPS

13

Mockup - End User UI design: USER WORKSPACE

Alpha

EPC

Heat demand

Fuel poverty

Baseline

SP

CR

DFES

DFES

Project 1

Project 2

...

Projects

Layers Projects Impacts

Dashboard

Add data
Account

EXPORT JPG | GIS | CSV

Tools

Carbon

Date Slider

Latest uploads: xxxxxxxxxxx (link)

Project 1
Report
View | status

Project 2
Report
View | status

Baseline
Report
View | status

Carbon
Report
View

Saved view 1

Saved view 2

Saved view 3

Regional view
Report
View

National view
Report
View

Mockup - End User UI design: AVAILABLE DATA LAYERS VIEW

EX

EPC

Heat demand

Fuel poverty

Housing

Topology

Capacity

DFES

Network

Solar PV

Heat Pumps

DSR

Low carbon technologies

Layers Projects Impacts

Dashboard

Add data
Account

EXPORT JPG | GIS | CSV

Tools

Gas networks

Date Slider

Mockup - End User UI design: PROJECTS VIEW

Rooftop PV

Batteries

Night storage heaters

Project 1 Export

...

...

...

Project 2

...

...

….

Project 3

Layers Projects Impacts

Dashboard

Add data
Account

EXPORT JPG | GIS | CSV

Tools

Date Slider

Mockup - End User UI design: BASIC MODEL ACCESS

Rooftop PV

Batteries

Night storage heaters

Project 1

...

...

...

Project 2

...

...

Project 3

Layers Projects Impacts

Dashboard

Add data
Account

EXPORT JPG | GIS | CSV

Tools Project 1 Settings Rooftop PV

Show on map

Apply rooftop PV to:

Logic 1

Logic 2

Logic 3 Show

Show

Show

Date Slider

Show impacted network path

Rooftop PV

Mockup - End User UI design: IMPACT/OUTCOMES VIEW

Alpha

EPC

Heat demand

Fuel poverty

Baseline

Projects 1

Project 2

….

My Projects

Project 2

Outcomes

Show All Projects

Layers Projects Impacts

Dashboard

Add data
Account

EXPORT JPG | GIS | CSV

Tools

Carbon

Date Slider

Outcomes

INTEGRATED DATA LAYER AND
MODELLING SYSTEM
PROOF OF CONCEPT

19

Julia Notebook 0.0.1

Sheffield University
This extension uses the Anymod Energy Modelling system to predict building stock
energy usage

Obfuscation of Data

Advanced Infrastructure
This extension allows any dataset to be anonymised to allow it to be published
publicly

Get

Filter this dataset where:

(MAKE IT LOOK LIKE A SPREADSHEET FILTER!)
Pseudocode: GSP Region = GSP is North of the Watford Gap AND GSP AVG Demand
> 23000 MW

Operate on this dataset:

Pseudocode: Adjusted GSP AVG Demand = (Current GSP AVG Demand
* 95%)

Apply Filter and Operation to Map - could be streamed
and change in real time

Save this “Filter and Operation” Privately

Publish this “Filter and Operation” For others to use

Addon? Connect this dataset to a notebook/code/api

Addon? Expose this dataset as an API

Addon? Export/Add this Dataset/Map to a Report

Filter this dataset where:

Pseudocode: GSP Region = GSP is North of the Watford Gap AND GSP AVG
Demand > 23000 MW

Operate on this dataset:

Pseudocode: Adjusted GSP AVG Demand = (Current GSP AVG
Demand * 95%)

Apply Filter and Operation to Map

Save this Filter and Operation Privately

Publish this Filter and Operation For others to use

Connect this dataset to a notebook/code/api

Expose this dataset as an API

Export/Add this Dataset/Map to a Report

Status of Prototype and Mockups
Completed stages

● Critical data sources for aggregated big data set identified and initial
data transform and load pipelines built

● Prototype Data Partner Solar Energy distribution model built
● MVP outcomes identified through extensive user research
● Mockups built and tested for feedback with both Planning level End

Users and Data Scientists
● First customers identified
● First iterations completed of:

○ Visualisation platform
○ Data transform pipeline
○ R statistical tool deployed as a scalable API

● Clustering software built and deployed
○ Software deployment platform
○ API deployed Kubernetes clusters
○ Unlimited server scaling
○ Allows own custom software to be deployed at scale

● FiWare, GCP and AWS platforms assessed
● Prototype of integrated data model and visualisation system built

Data aggregation

Data
dashboard

Visualisation platform
23

TO COMPLETE IN REACH EXPERIMENT PHASE

• Assess scalability potential of energy data modelling
system - test with energy data scientists

• Identify testable energy data ontologies - integrate
and test with energy planners

• Integrate time-series data optimisation - test speed
and throughput requirements with end users

• Integrate streaming of geolocational data - test
visualisation of geolocation data with end users

3. Scalability & flexibility of the solution
What are we planning that is different?

1. Planning for scale from the start using modularised
microservices architecture

2. Optimising data search and aggregation of against
appropriate data structures

3. Building in data streaming and messaging capabilities as
early as possible to solve SQL bottlenecks

4. Building for commercial viability and utility from day one

Moving from monolithic data structures
difficult to scale

vs.To distributed data structures that scale
on demand

25

3. Scalability & flexibility of the solution: overview
REACH: CURRENT EXPLORE PHASE PLATFORM ARCHITECTURE AND DATA FLOW
THIS API FIRST ARCHITECTURE HAS BEEN SUCCESSFULLY TESTED AS PART OF THE EXPLORE PHASE TO PROTOTYPE DATA INGESTION PRINCIPLES, MODULAR MODELLING APPROACH AND
SCALABILITY OF ARCHITECTURE

QUERY INGEST
PIPELINE

Data ingest via Query

Ai FRONTEND PLATFORM

Ai BACKEND PLATFORM

Geolocation
Data Store

PostGIS

DATA INGEST PIPELINE
Ingest, clean, reformat

and scheduled update of
data

Energy
Data Store

Apache Druid,
Kafka

RENEWABLES DATA

ENERGY GENERATION
AND DEMAND DATA

BUILDING STOCK DATA, etc.

Private User Authentication

Private User Dataset Recording
- provenance, timestamping

USER INTERFACE

CUSTOMER PRIVATE DATA

RE
ST

 A
ND

 A
PI

FRONT END DATA
INGESTION

Customer data ingest &
parsing pipeline

AP
I

AP
I

FRONT END DATA
PIPELINE

UX data routing pipeline

AP
I

AP
I

PUBLIC MODEL CATALOGUE
Models, Algorithms & Calculations
Zepellin, Julia, Jupyter Notebooks

Building Stock Models, Energy
ModelsAP

I

AP
I

DATA TRANSFORM AND
LOAD

Fetch, transform and load
of cleaned data from

storage
Python Functions,

Jupyter, Apache NiFI,
Airflow

AP
I

AP
I

COMMON DEV COMPONENTS AND DEV
LAYER ARCHITECTURE

Common dev components and resources,
cloud platform tools, etc.

AP
I

AP
I

DEV & CLOUD PLATFORM

DIRECT API FEEDS WHERE
APPROPRIATE

NETWORK TOPOLOGY &
CONSTRAINTS

DATA CATALOGUE

PRIVATE MODEL
AND

DATA VIEWS
CATALOGUE,

PROVENANCE,
VERSIONING

INTEGRATED
ONTOLOGY

Direct
End

Users

Dev/
Data

Scientist
End

Users

DATA CLEANING
TOOLS, ETC.

OBFUSCATION
TOOLS

Authentication and authorisation:
All users of the system will be required to use two factor authentication systems
to access data and will be required to provide KYC identification to allow access to
sensitive data.
Developers are not given access to core data.

Compliance:
We recognise that whilst our data sets do not hold personally identifiable
information that would be subject to GDPR regulation, we do store strategically
sensitive information that we have a duty of care to protect. If mishandled, data
of this nature could have lasting ramifications.

Encryption and Separation of Concerns:
All data on our systems is encrypted by default both in transit and at rest.
Our unique Kubernetes deployment platform separates application layer from
customer data and customer configurations to ensure total sandboxing of all
customer data with no access by engineers to private customer datasets beyond
what is needed to provide the service.

Ethics:
The responsible use of algorithms and data is paramount for the sustainable
development of machine intelligence applications. We adhere to the UK’s Digital
Catapult Ethics Framework and the European Ethics Guidelines for Trustworthy Ai

4. Data security and
legal compliance

5. Quality assurance and
Risk management
ISO 31000 Risk Management practices will be
used throughout this project
A dynamic risk register utilising risk screening
will be used to monitor the project, adhering to
ISO 31000 principles.
Risks and critical path analyses have been
conducted and will be reviewed at fortnightly
meetings, led by our risk manager to ensure
active risk monitoring, mitigation measures, root
cause analysis as necessary and proactive
minimisation of knock-on delays. The top five
technical risks are shown (right)

RISK DESCRIPTION MITIGATION

Unsuitability of proposed Data
Architecture due to inability to meet user
needs leading to low user adoption

3 3 9 RETENTION: Risk of unsuitability is the purpose of the
project
REDUCE: Explore a wide range of architectures during
the feasibility phase

2 2 4

Compute solution requires unjustified
power resources and impact on carbon
emissions. Environmental impact
precludes wider adoption beyond trial.

3 3 9 REDUCE: Use optimised compute on massively
scalable clusters to reduce compute time. Optimise
algorithms and cloud storage to reduce requirements
of data storage, machine learning training and
caching.

1 3 3

Software bugs cause system
interoperability

2 3 6 MITIGATION: Weekly code reviews, extensive testing,
patient/client bug reporting functionality, quality
assurance mechanisms.

1 1 1

Poor UX experience causing users to
disengage or misuse software. Causing
lower revenue and reputational risk.

2 3 6 REDUCE: Deploy extensive user research and testing.
Employ UI/UX principles.

1 3 3

Scaling leading to decreasing architecture
resilience with increasing users.

2 3 6 REDUCE: Extensive real time testing as users increase.
Rollback ability.

1 3 3

Incomplete data sets result in reduced
ability to fully test architectural options
ready for Alpha Phase, resulting in
incomplete design.

3 2 6 REDUCE / SHARE: Use stakeholders or private data
providers to secure more data sources, prioritise data
analysis further, to focus on most critical architectural
components, build in flexibility to Alpha stage to plug
gaps in data analysis and test other versions in
prototyping stage

2 2 4

QUESTIONS

29

APPENDIX

30

3. Scalability & flexibility of the solution: detail

Private Model
Catalogue

Private
Model

Catalogue

Public Model and Data
View Catalogue

Solar Power Population
Distribution Data View

Fossil Fuel Power
Demand Time-series View

All users require a private version of this dev architecture to
be available and to be able to share models built on it

Any other data view...

DSC Low Voltage Network
Inference Model (Python)

Building Stock Model
(Julia)

Any other model…
(Simple Filter)

Notes on CI/CD Pipeline and Software Development Practices
We use Git Repos (currently Github) to store all code. All code is deployed with a Dev flag initially. This flag is recognised and triggers both unit
tests and a code review by senior devs. Once unit tests are passed, code review is conducted. Since all code is developed as isolated modular
functions, this allows code to be deployed once test and functionality is confirmed. See the following two slides for further details.

Software Development
Our Professional Principles and Practice: Overview

● Everything is an API
○ Each module has its own repository
○ Each module has its own API
○ All code can be developed completely independently to allow iterative

improvement of isolated chunks
● Separate the concerns

○ Make improvement easy. Model and compute via API: calculate at the backend,
display at the frontend

○ Separate code into controllers, utilities and handlers
● Type is nice

○ Use TypeScript and heavy software linting to ensure good quality code
● No-one gets to push their own code to production

○ Code cannot be pushed to production without review by another senior team
member - no exceptions

Software Development Principles: Detail
1. Requirements gathering - Project managers gather requirements from the team understanding the user story - which is the end goal, not a feature, expressed from the software user's perspective. A user story

is an informal, general explanation of a software feature written from the perspective of the end-user or customer.
2. Architecting the requirement - A solutions architect from the team writes down a “technical specification” of the user story. In this process, the architect assesses potential changes to existing components,

databases and interfaces. The architect ensures that there is either data or code redundancy. The goal of this process is to break down the user story into granular tasks that are maintained as Github Issues and
are coded according to priority.

3. Development Lifecycle - The developers refer to issues assigned to them and estimate a time for completion. This data is aggregated by the project managers helping them properly plan the next set of
requirements or manage releases to clients. All code is maintained on github and pushed to a branch periodically. The developers not only write the code for the module but also write the unit tests and the
integration test. When the code is ready to be deployed, developers create a “pull-request” requesting a senior developer to review their code. Pull-requests are usually linked to an issue so the reviewer has all
the information they need to conduct a thorough review. All backend and front end modules follow the principle of “separation of concerns” that distributes the program to distinct sections such that each section
addresses a separate concern. These are the steps followed by the developers while coding:

a. Code structure - The developers are responsible to maintain their code in
i. Controllers - Controllers define the main intent of the feature. The “core-logic” is defined in controllers.
ii. Utilities - Utilities are functions that are required throughout the feature and may be used by one or more controllers. This reduces code redundancy.
iii. Handler - A handler is an abstraction wrapper that processes a request, executes an appropriate controller and returns a response. Handlers are mostly used in writing APIs

b. Modularity and reusability- The developers are required to maintain their code in a way where it can be visualized as a class or a function. A function that is used more in more than one place is
generally placed under “Utils” but if the particular function is used in more than one API, it is moved to “common-utilities”. Common utilities are a set of classes and functions that are used by almost all
frontend or backend APIs. This ensures that developers do not re-write code that should be standardized.

c. Linting - We use ESlint and pyLint that are integrated into the IDEs. This helps developers spot errors and fix them before deploying code. The same tools are setup in the automated pipeline. When
developers push (commit) code to their branch there is a lint check that is performed. The same tests are run when the reviewer approves code to be merged into the master branch. This ensures that
when the code is merged into master, there are no errors or unused definitions.

d. Tests and coverage -Developers maintain two tests for their module (Unit Test - a test for one functionality or module and an Integration Test - which is a test for the entire functionality) In these tests,
developers write not just positive or happy cases but also show proof that the code is written can handle exceptions and errors without halting execution through writing negative cases. During the
review, the reviewer checks the tests to ensure that all cases are covered. The automated pipeline is designed to conduct tests everytime code is merged to master. A summary of the report is
created that shows the “coverage” of the tests written for the functionality. If the coverage is low (this happens if the developer did not address all cases on their tests) code cannot be merged by the
reviewer.

e. Updating issues - The last step of the development process after a PR is merged is to update the issue back on Github where the developers are required to put down the commit that solved the
respective issue. This ensures documentation is consistent and all issues can be directly linked to a commit id

4. Dev Deployment - When code is merged to master, an automated pipeline is triggered that runs tests, checks for lint issues and packs all requirements and deploys it to the serverless function. At this point, the
feature is available for the product team to test.

5. Production Deployment - After the product team and the testing team has tested the feature built on development thoroughly the code progresses through other respective environments (Dev → UAT → SIT
and finally Production)

METHODOLOGIES

EXAMPLE
PROTOTYPE
SOLAR POWER
DISTRIBUTION
MODEL

Calculate a ‘distance decay’ percentage factor between all points
in the network

Map CENTROID to pes_id based on lat lon (geocoder)

Map GSP to pes_id based on pes_id

Convert lat lon to radians for both GSP and CENTROIDS

Calculate distance from every GSP to every CENTROID using Haversine
formula

To calculate percentage of power that each CENTROID should receive from
each GSP where GSP and CENTROID share same pes_id

Normalize distance in 2 steps:

STEP ONE: Dgsp=n (i) = sqrt(Dgsp=n (i)2 - Dgsp=n (max)2)
STEP TWO: Dgsp=n (i) = Dgsp=n (i) / sum(Dgsp=n)

Multiply the resulting distance matrix with the corresponding energy
generated at the gsp

DONE

Link Population Centre to Power Region

Link Grid Supply Point to Power Region

Calculate relative position of GSP to Population Centre

Calculate distance across curved surface

Calculate how much power each Population Centre should get so long as they
are in the same Power Region

Use this factor to divide up the available energy for a given time
period to all Population Centres

DONE

ALGORITHM EXPLANATION

POC: CAN BE REPLACED BY ITERATIVELY
BETTER MODULAR MODELS SUCH AS A

KRIGING FUNCTION

Emissions API Definition Prototype
Created for REACH Explore

Carbon Emission Controllers

1. Marginal Intensity Controller
2. Regional Intensity Controller
3. Plant Ranking Controller
4. Regional Ranking Controller

Proof of Concept
Time Series Data
visualisation

Hourly generation
output
+ Mapped Solar
Capacity

36

Proof of concept
Time Series Data:

The “Beast from the
East” cold weather
event Feb 2018

Solar vs. Non-Solar
aggregated to local
Grid Supply Point

37

Proof of Concept

Carbon Intensity
(Marginal Carbon
Intensity) mapped
to Region Local
Authority Level

Modelled against
local population

Local
Authority
Fuel Mix
Percentage

38

