

Brix Energy as a Service

Energy Management System

Challenge: Problem

- Raise of new green technologies (PV panels, wind turbines, electrical batteries)
- New ways of consuming energy
- Smart Microgrid
- Managed by Energy Management System (EMS)

Challenge: Description

- Proposed by the Centre for Research and Technology Hellas (CERTH)
- Goal: develop a system capable of optimising the operation of the building as a micro-grid
- Expected outcomes:
 - 20% RES optimisation
 - 20% storage optimisation
 - 20% energy savings

- CERTH Energy: Energy information related to building energy consumption, generation and storage
 - Data issue:
 - Few data scores
- Phoops G-Smart: 10 years of photovoltaic measurements (energy) weather conditions)

Technical Scope: Data

production, load curves, power exported to the grid, solar radiation and

Reinforcement Learning (RL):

- Gives a machine the ability to learn to take actions
- Machine try to optimize a reward signal

Microgrid context:

Reward signal could be energy cost, peak of load, safety

- Microgrid formulated as Markov Decision Process (MDP)
 - Defined by a 4-tuple: (S, A, P, R)
 - **S**: finite set of states
 - A: finite set of actions
 - **P**: transition function
 - **R**: reward function

• MDP goal: compute optimal policy π^* that maximizes the expected sum of rewards

- Transition function (P) requires well knowledge of the system states which are composed
- state
- New state at time-slot t (triplet): $S(t) = (D(t), SE(t), P_{\mu}(t))$
 - D(t) = L(t) G(t) net demand
 - L(t) demand load at time t
 - G(t) produced energy at time t
 - SE(t) stored energy in the battery at time t
 - $P_{\mu}(t)$ price of the utility energy at time t

• **Q-Learning**: model-free reinforcement learning algorithm to learn the value of an action in a particular

Q Learning

- Actions:
 - $D(t) \leq 0$
 - a_0 : use generated energy to fulfil the load and to charge the battery
 - $S(t) = \{D(t) > 0, SE(t), P_{u}(t)\}$
 - a_1 : feed the net demand D with only the utility energy
 - a_2 : use the battery to feed the net demand with utility energy if necessary
- **Reward:** instantaneous operational revenues r_t at time t. Three quantities:
 - Electricity generated locally by the PV panels ullet
 - Net demand (difference between consumption and production)
 - Power balance within the microgrid

Core of the Q-Learning algorithm: Q-value function (quality of each action)

$$Q^{new}(s,a) \leftarrow (1-\alpha)Q$$

(Bellman equation)

- Q(s, a) sum of three factors:
 - $(1 \alpha)Q(s, a)$: current value weighted by the learning rate (α)
 - αr_t : the reward to obtain if action *a* is taken when in state *s*
 - discount factor [0,1])

 $Q(s,a) + \alpha[r + \gamma \max_{a'} Q(s',a')]$

• $\alpha\gamma \max Q(s', a')$: the maximum reward that can be obtained from state s' (weighted by

- To approximate Q^{new} we propose using a Neural Network (NN) (Francois-Lavet et al., 2016)
 - Inputs: state vector
 - Output: Q-values for each discretised action:
 - 1. Charge the battery
 - 2. Keep it idle
 - 3. Discharge the battery

Results: winter week

Results: summer week

Results: Operational Revenue

Operational Revenue on the test and validation data. Beste results obtained after 92 epochs, with validation score 136.46€/year. Test score is 87.34€/year

Example: Home Energy Agent

Data Collection

Real-world data is recorded by the smart home's energy management system

Training the Model

The data is used to train the deep reinforcement learning model for the autonomous agent

З

Optimization

Once trained, the agent responds to changes in the home environment to optimize energy usage in real-time

Scalability:

- Horizontal Scalability (Kubernetes)
- Distributed Processing (Hadoop/Spark)

Flexibility

- Several outcomes
- Multiple environment (house, building, city)
 - BriX As a Service

Scalability & Flexibility

Data Security and Legal Compliance

- Certified Identity Management solution (Keycloak) • Public key validation on API gateway (Kong)
- Token-based security operation
- Transport Layer Security (TLS)
- Firewall
- Private Network
- GDPR compliance: personal data separation and encrypted storage

Quality assurance and Risk management

- Lack of data in microgrid context
 - Mitigation: real-world data (G-Smart)
- Microgrid relies on a complex stochastic structure
 - Risk: model is unknown
 - Mitigation: model-free (deep) Reinforcement Learning algorithm
- Best coding practices
 - State of the art software components, libraries, languages and testing techniques Continuous automated delivery pipelines

 - Real-time monitoring system (Prometheus and Grafana)
 - Pull request approach with code reviews for the source code development

Future Developments

- Possibility to sell excess of energy
- Add seasonal infos
- Add predictions of future production

Brix Energy as a Service

Energy Management System