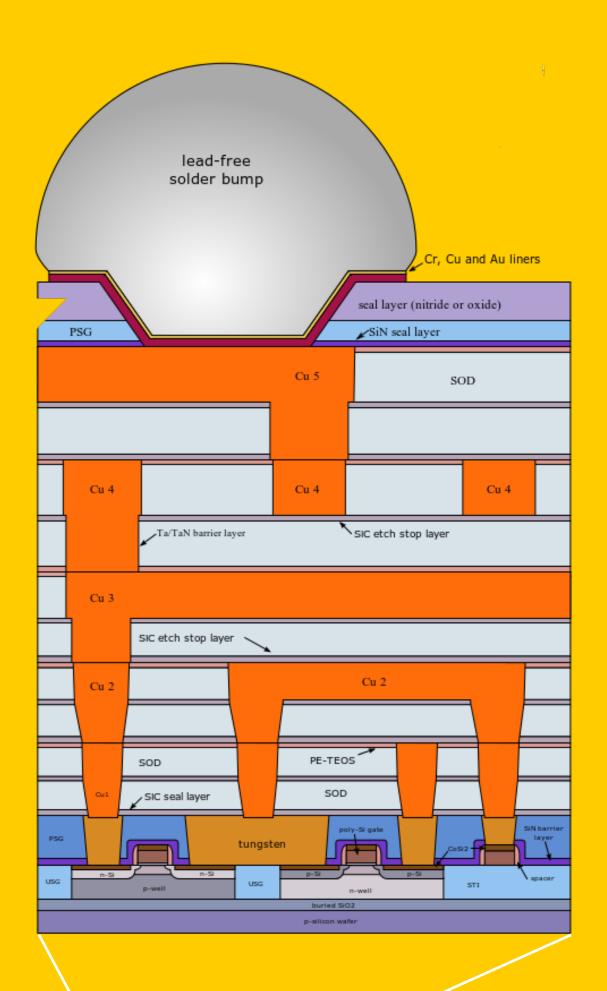
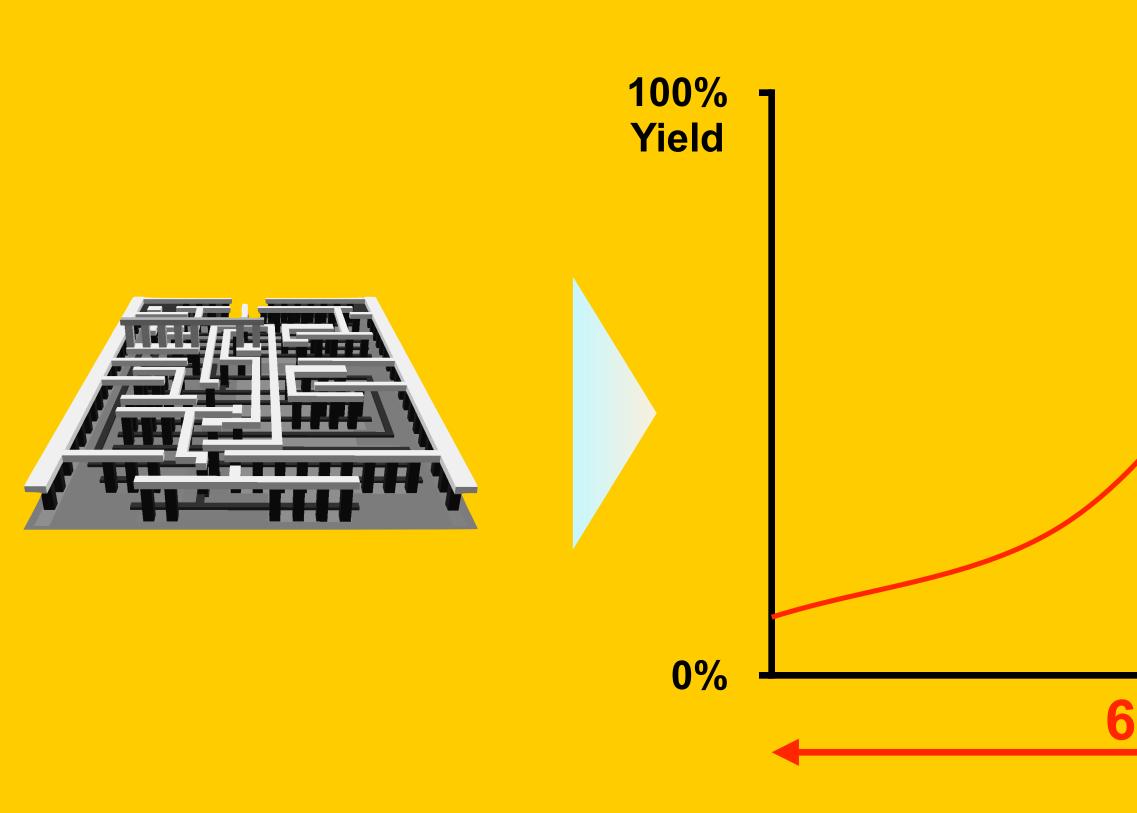
& conductiv.ai Zero-Iteration Manufacturing

Increasing Complexity in Semiconductors

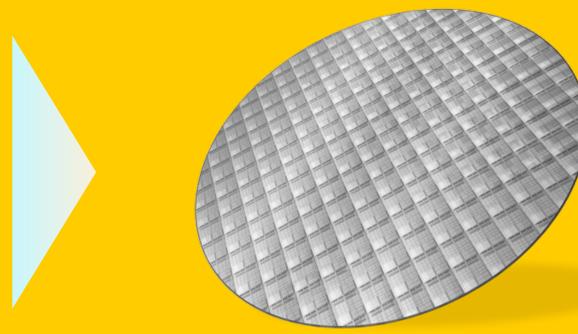


Hundreds of production steps **Thousands** of process parameters **Billions** of transistors/chip

Slow Ramp-Up Hurting Profitability



Finalized Design

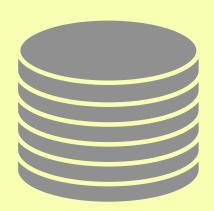


6 Months

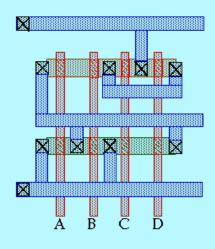
Ramp-Up (Trial & Error)

Volume Production

Minimizing Trial & Error With Al

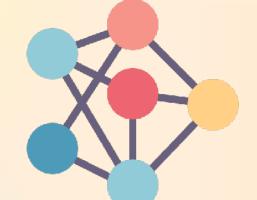


Analogous data from previous chips



Synthetic data from physics simulation

Potential Value: \$30 million /factory/year



Federated Transfer Learning

Perfect Recipes for entire production flow

Aconductiv.ai

Works In Data-Scarce Early Production

Transfer learning and synthetic data enable accurate models even with little production data.

With decentralized machine learning, data is not aggregated in one single silo.

Highlights

Privacy-Preserving

Self-Perfecting Models

Automated machine learning can continuously refine models during process drifts and process shifts.

Aconductiv.ai

Transfer Learning

When adding a new tool to an existing fleet, replacing a reaction chamber, or producing derivative chip products, currently there's the need to build new models from scratch, even though existing or physics-based models already exist.

In the beginning of new tool/ chamber usage or ramp-up of new chip, there's often very little production data available. However, these information can provide taskspecific insights to help build the localized model.

By transferring the low-level features from the General Model and incorporating task-specific features, the new Localized Model can work beyond its initial limited data range, enabling virtual experimentation with much wider sets of parameters.

Localized Model

Transfer Learning

General Model

Conductiv.ai Confidential

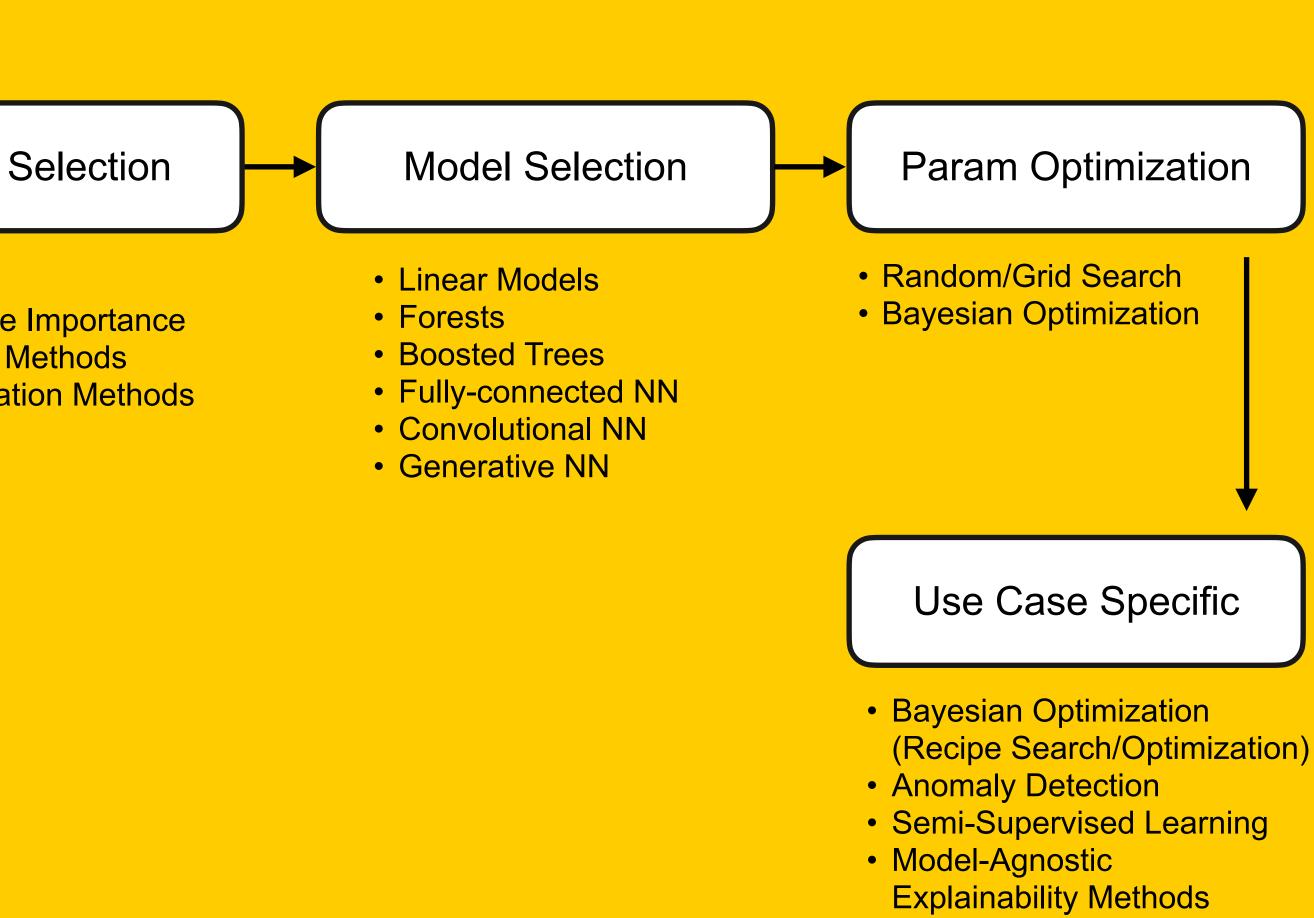
Task-specific features



Localized Model

End-To-End AutoML Historical & Proxy Data: Parameter Data Sensor Data Measurement Data Feature Selection Feature Preprocessing Imputation • PCA • Outliers • Feature Importance • Time features Graph Methods Categorical Encoding • Elimination Methods Scaling Synthetic Data: Physics Simulation Feature Engineering • Expert Knowledge

- Polynomials
- Interactions
- Binning
- Embedding



Density Estimation

General Use Cases

Process Modeling & Optimization

Production yield Material use **Revenue**

Need for physical measurements **T**ool utilization

Conductiv.ai Confidential

Production Scheduling

Design of Experiments

Time-to-market **Cover wider** parameter ranges

a conductiv.ai

Case Study: CVD Cost vs. Quality

Problem: A fab wants to reduce material consumption cost for a chemical vapor deposition process while maintaining process quality

Method: Use Conductiv.ai Process Modeling to optimize cost vs. quality

We input a large dataset with recipe parameters, sensor readings, and metrology data.

Conductiv.ai automatically detects the recipe parameters, and displays their general statistics.

User is able to set the range of extrapolation, to test parameters values outside of initial range.

Parameters												
USE	NAME	TYPE	NVALUES	MEAN	STD	MIN	MAX	EXTRAPOLATION MIN	EXTRAPOLATION MAX	COST		
	HE FLOW	num 👻		1829.818	0.058	1829.676	1829.949	1829.649 Ĵ	1829.976 🗘			
	FLOWFACTOR	num 🕶		0.917	0.027	0.885	0.95	0.879	0.956			
	SPACING	num 🔻		0.082	0.001	0.08	0.083	0.08	0.083			
	DEP TIME	num 🔻		64.597	2.096	59.61	68.53	58.71799	69.422			
	DEP TEMP	num 👻		520.727	0.035	520.636	520.906	520.6089 ! Ĵ	520.933 🗘			
	TOOL	cat ▼	4									

* dummy dataset



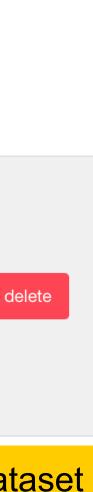
The AutoML Engine automatically generates a machine learning model with the most suitable algorithm to predict the target (thickness in this case)

The scores for each algorithm are displayed.

Models

MODEL	FINISHED	DATASET	PARAMETERS	TARGET	ALGORITHM	AGGREGATED ERROR		
3	yes	test	HE FLOW FLOWFACTOR SPACING DEP TIME DEP TEMP TOOL	THICKNESS	SVR GradientBoostingRegressor RandomForestRegressor MLPRegressor AdaBoostRegressor Ridge Lasso	0.613 0.632 0.633 0.65 0.675 0.839 0.839	select	C

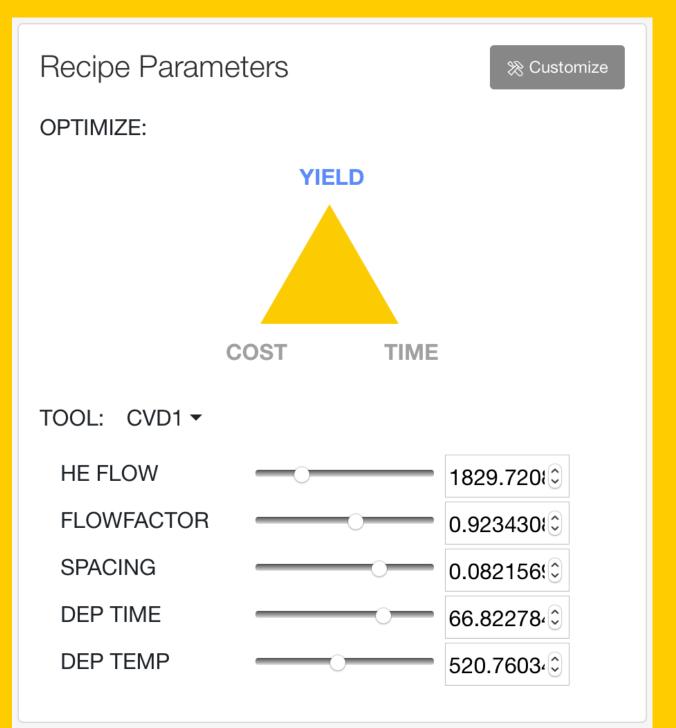
* dummy dataset

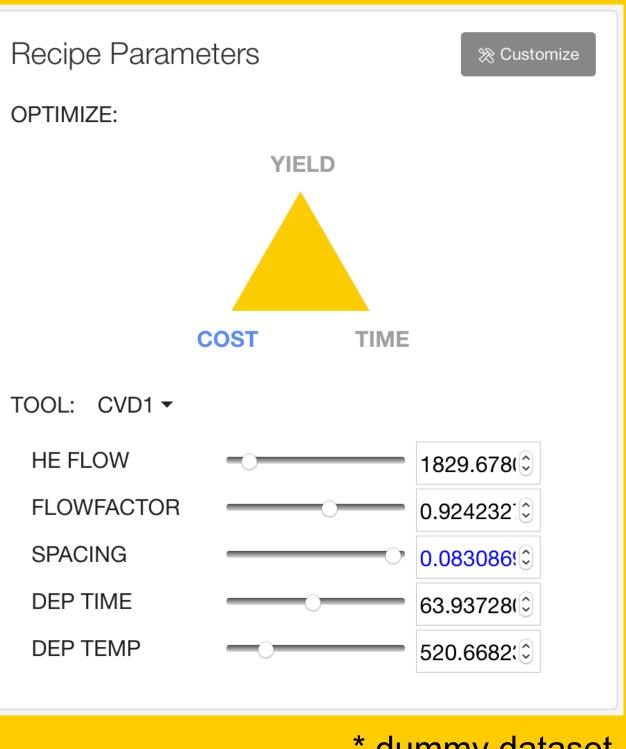


Using the model selected, the software automatically determines the best recipe parameters based on selected criteria.

User can select the three presets (Yield, Cost, Time), or click on "Customize" to set specific criteria (Yield >85%, Time <60s... etc)

In this case, we chose to optimize for cost.

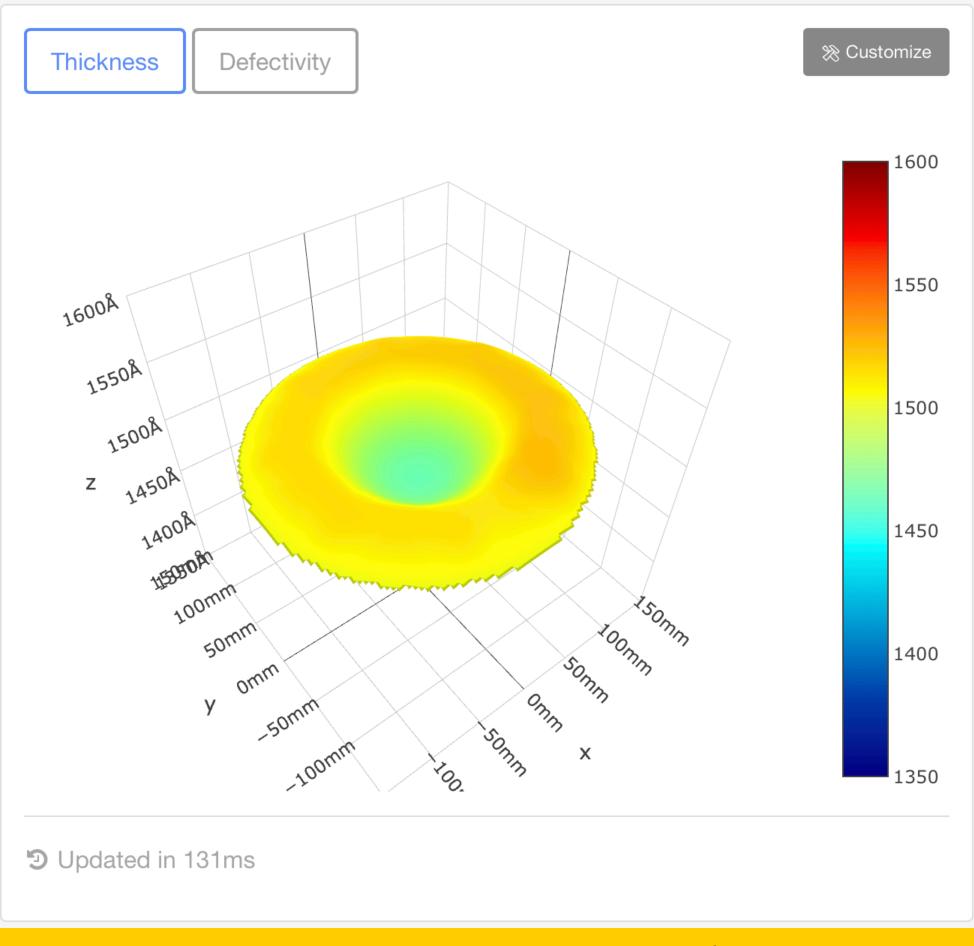




* dummy dataset

After selecting to optimize for cost, a visualization of the wafer's thickness profile is generated dynamically.

When the user is content with the selection, the recipe parameters can be sent directly to the tool.



* dummy dataset

& conductiv.ai Zero-Iteration Manufacturing

