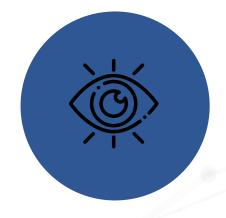


EnCODE: Energy Consumption Disaggregation

Timotej Gale


REACH Incubator Datathon – Paris, 19.-20.05.2022

EnCODE Overview

Theme-Driven Challenge

The goal of this challenge is to disaggregate the energy consumption from central load to individual device loads in an unobtrusive manner.

Consumption Disaggregation

Energy consumption disaggregation to inflexible (lighting, cooking ...), flexible (EV, battery, heating ...) and self-generation (PV) baselines.

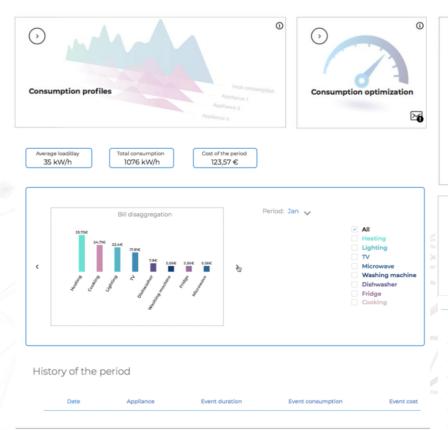
Consumption Prediction

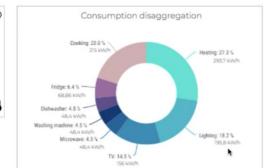
Prediction of aggregated and per load future energy consumption and production.

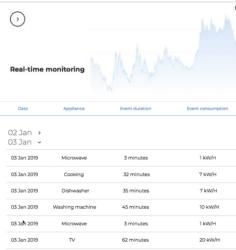
Data Management and Sharing

Private and confidential data management, exchange, and regulatory compliance.

Problem & Motivation


- Energy transition is imposing multiple challenges
- Massive amounts of renewable and DER
- Deficient low voltage grid observability
- Low coordination of energy management systems at different levels
- Hardware or data availability issues
- Inaccurate/nongranular consumption/generation models
- Secure data value chain management difficulties

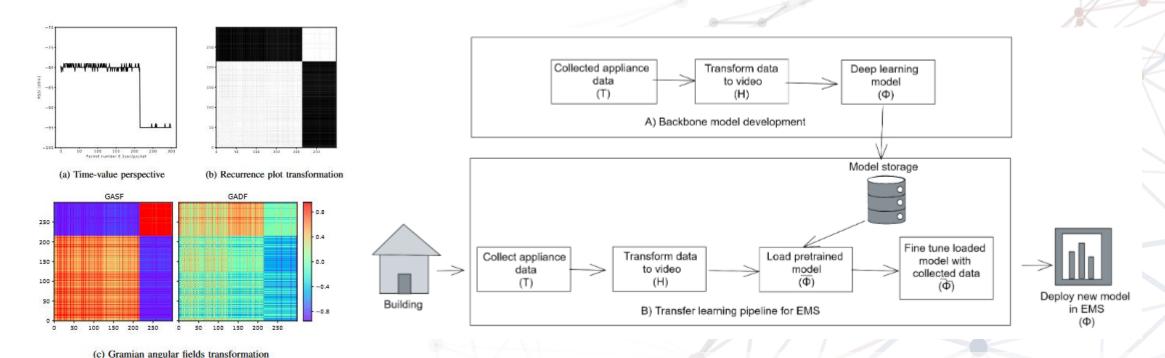



Proposed Solution

REACH

- Exploit existing infrastructure and assets
- Disaggregation, NILM, consumption and production prediction, clustering
- AlaaS aimed at
 - Flexible load detection and characterization
 - Load and user segmentation
 - Grid optimization and planning

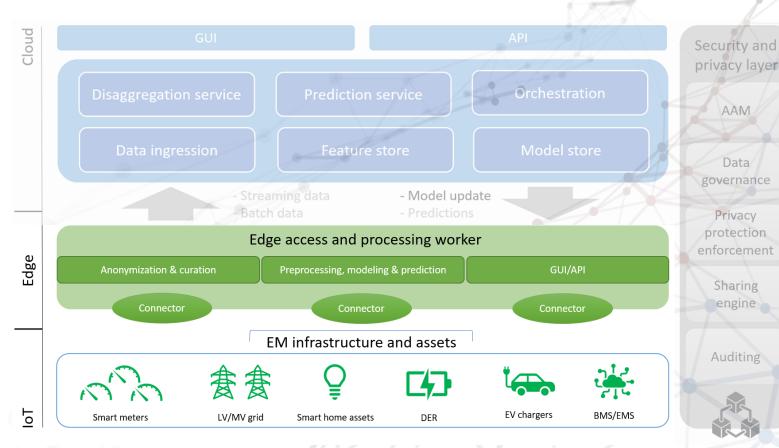
Disaggregation & Prediction


- Model development will base on several datasets
 - CERTH energy, AMPds (REACH challenge)
 - UK-DALE, ECO, REDD, IAWE, REFIT, BLOND, PLAID (open)
 - Elektro Ljubljana, Elektro Celje, Energie Steiermark, ASM Terni, SONCE (partners)
- Machine learning approaches applying deep learning
 - Features for regression/classification models
 - Input: Aggregated and/or per appliance load profiles, consumption/production, weather, ...
 - Target: ON/OFF and appliance type labels or energy consumption/production prediction for various time horizons (aggregated and per load type level)

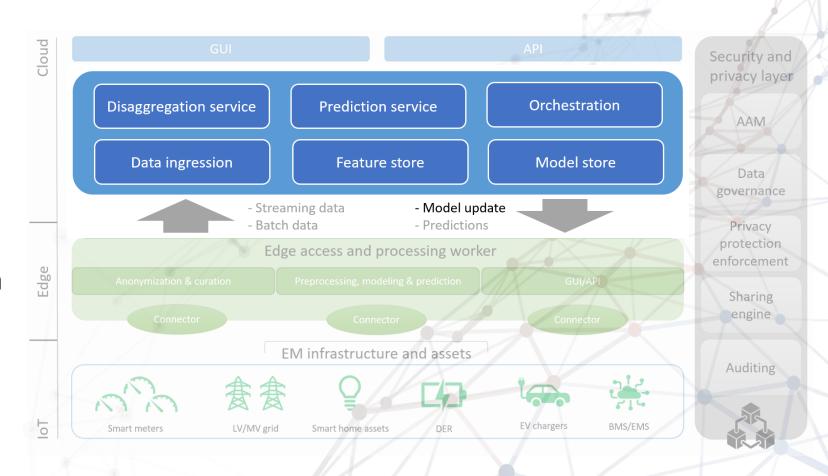
Disaggregation & Prediction

- Application of resampling strategies, windowing, transformation approaches (timeseries-to-image using recurrence plots, Gramian Angular Fields, ...)
- Backbone models fine-tuning using transfer learning approaches

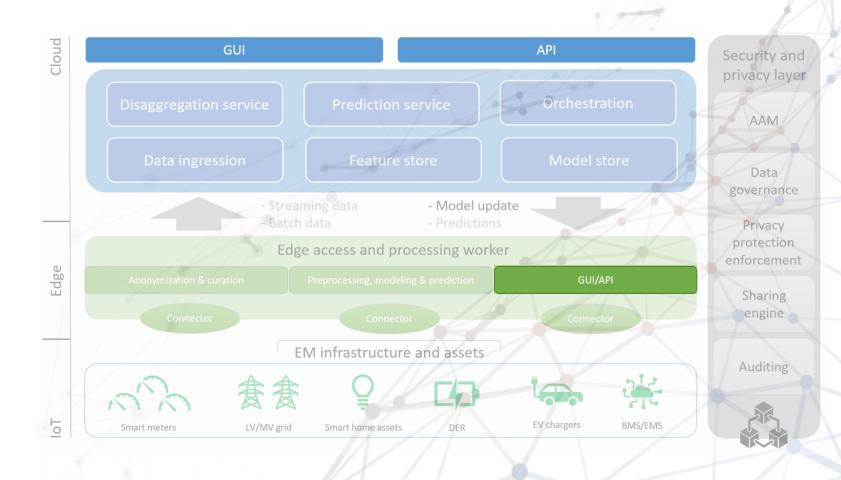
Disaggregation & Prediction


- The ML pipeline will be built using state-of-the-art toolbox
 - Python, Keras, PyTorch, Tensorflow
 - AutoML, Neural Architecture Search
- Flexibility of the solution is ensured through
 - Swapping the data pre-processing pipelines
 - Transfer learning, backbone models adaptation (grid parameters, load profiles, ...)
 - Generic time series prediction models (e.g., water, heat or gas consumption)
 - Disaggregation algorithm application to event detection/classification (e.g., water tap on, heat loss, gas leak, ...)
- Scalability approaches employing data sampling and windowing techniques as a trade-off between accuracy/granularity and computation/storage

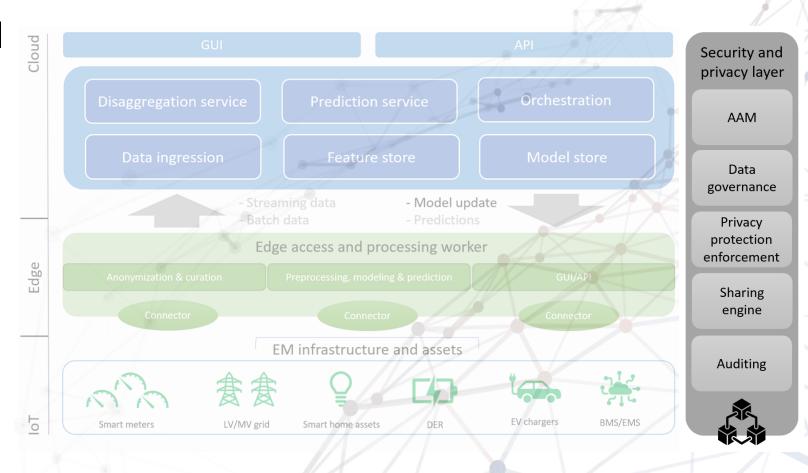
- Layered architecture
 - IoT, edge, cloud
- Existing infrastructure
 - Data connectors
 - Smart meters, LV/MV, ...
- Edge processing worker
 - Distributed approach
 - On-premises processing
 - Anonymization, federated learning, edge prediction
 - Vertical and horizontal scalability, reduced transfer



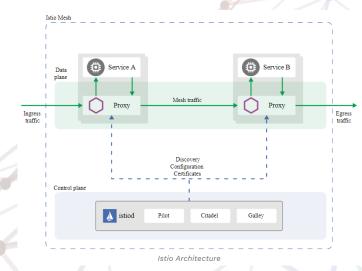
ML pipeline


- Data ingression
 - Streaming, batch
- Feature/model store
- Evaluation, monitoring
- Services
 - Disaggregation, prediction

- GUI, API
 - Cloud, edge



- Security/privacy vertical
 - AAM
 - Auditing
 - Sharing
 - Data governance
 - Privacy


Security

- Authentication, authorization, and auditing mechanisms
 - Open-source Identity and Access Management tool Keycloak
 - Blockchain-enabled authorization policies, reputation, and auditing tool
 - Privacy Protection Enforcement (H2020 PH0ENIX)
- Application of cryptographic methods
 - Public key infrastructure (PKI)
 - Data encryption at rest and in transit
- Service mesh for service-level security and monitoring
 - Open-source service mesh tool Istio
- REACH Toolbox for Secure and Trusted Data Services
 - BaaS, Audit Messages Storage Platform, Smart Contracts Verifier, ProRegister

Compliance & Data Governance

- Application of privacy techniques on personal/confidential data
 - Data anonymization and curation process
 - On-premises data processing, federated machine learning
- Blockchain-based GDPR-compliant sharing/exchange of data
 - Data registration, consent exchange, data access/usage policy definition, comprehensive auditing functionalities and actor reputation assessment
 - Control and transparency over entire data lifecycle, and data sovereignty
- Adoption of additional complementary components
 - International Data Spaces (IDS) components
 - IDS Connector
 - Other components of the REACH toolbox (Data Sharing Tool, FedEHR Anonymizer)

Quality Process

- Agile quality process
 - Continuous risk/concern assessment, evaluation, and mitigation
- Design, development and testing according to standards and best practices
 - Continuous integration and delivery (CI/CD)
 - Automated testing (unit, integration, security)
 - Shift-left paradigm implementation
 - Focus on user experience, bug prevention and reliability
 - Continuous verification/validation according to specification and requirements
- Continued monitoring of production deployment, alarms
- Certification of components where applicable (e.g., IDS)

Potential Risks

Risk	Mitigation
Insufficient/inappropriate model training data.	Ongoing discussions with relevant data providers and potential pilots.
Computational complexity of number of assets that need to be characterized.	The window function and the calculation time step will be adjusted.
Inadequate horizontal and vertical scalability.	Shift to commercial cloud solutions (e.g., AWS, Google Cloud,).
Incompatibility of IDS and REACH toolbox.	Extend in-house solutions or adopt other identified commercial/open-source solutions.
Insufficient developed model performance.	Use existing in-house solution, collect more data, apply different data transformations and algorithms.

Our Related Work

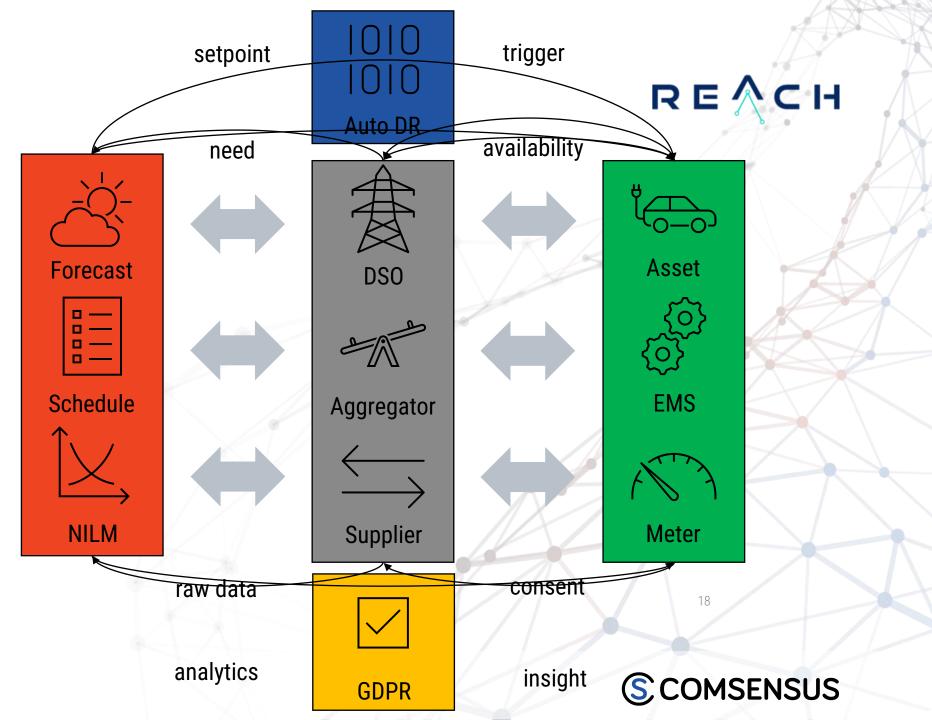
Review

- A. Belay, S. Puranik, R. Gallart-Fernández, H. Tuiskula, J. Melendez, I. Lamprinos, F. González-Díaz, and M. Smolnikar: Developing Novel Technologies and Services for Intelligent Low Voltage Electricity Grids: Cost-benefit Analysis and Policy Implications, Energies, 2022 [DOI: 10.3390/en15010094]
- A.E. Saldaña-González, A.Sumper, M. Aragüés-Peñalba, and M. Smolnikar: Advanced Distribution Measurement Technologies and Data Applications for Smart Grids: A Review, Energies 2020, [DOI: 10.3390/en13143730]
- D. Sodin, U. Rudež, M. Mihelin, M. Smolnikar, and A. Čampa: Advanced Edge-Cloud Computing Framework for Automated PMU-Based Fault Localization in Distribution Networks, Applied Sciences, 2021 [DOI: 10.3390/app11073100]

NILM

- D. Lorbek Ivančič, B. Bertalanič, G. Cerar, and C. Fortuna: Learning to Automatically Identify Home Appliances, SiKDD conference, October 2021
- L. Ogrizek, B. Bertalanič, G. Cerar, M. Meža, and C. Fortuna: **Designing a Machine Learning Based Non-Intrusive Load Monitoring Classifier**, ERK Conference, September 2021
- + some in submission

Thank you!


Timotej Gale

<u>timotej.gale@comsensus.eu</u>

Vision

- Now
 - Technology building blocks
 - GDPR+AI
- REACH
 - Break silo approach
 - B2B2C
- Beyond
 - Create revenue opportunities
 - C2B2B

