We will ride railways into the future \rightarrow One system for each track

Challenge

Bring preventive maintenance to the railway infrastructure industry to assure ride safety

We face this challenge with technology, **know-how**, data analysis and the **right partners**

Opportunity

Working with Metro de Barcelona (TMB) we have access to the vehicle and the infrastructure \rightarrow An ever growing database

Workflow

- Creation of historical records
- Allowing preventive maintenance

Technical assessment - Workflow detailed

Data Capture

- \checkmark Using data of all subscripted customers \rightarrow More robust system
- \checkmark Fast region-dependent response.
- ✓ Report image with bounding boxes and confidence prediction for each defect.

Data processing

Data product: Analytics + Status + Alarms + Presentation layer

Results for identification of different elements (1)

Results for identification of different elements (2)

Status of the mock up - Our roadmap

_ _ _ _ _ _

New technical possibilities

- More defects
- ✓ Feature matching for detecting lateral movements in consecutive images.
- **Visualizations**
- ✓ Railway reconstruction using the feature displacements.
- Integrate CV and IMU data
 ✓ Dynamics ↔ Track status
 ✓ Rolling stock maintenance
- \checkmark Evaluate root cause of damages

Technological challenges and tools

- Cupy, cudf and matplotlib for data organization and exploratory analysis using GPU.
 ✓ Highly unbalance data.
- Select state-of-the-art DL algorithm from literature.
 - \checkmark Translate the model to a fixed framework for inference: Onnx runtime.
 - \checkmark Currently using yolov5 for PyTorch.
- Al training in python, and inference in C++.
- Web app using python and Django.
- The capture device can be located anywhere, but data will be stored in European data centers.
- Use LabelMe and VM admin tools to increase the dataset and perform periodic updates of the DL models.