

CO2 PATH

Dependable calculation & reporting of logistics emissions

Dimitrios Kourtesis, PhD

Ideas Forward

The team

Dimitrios Kourtesis, PhD

Consultant - transport emissions data, EC JRC & DG CLIMA I Startup advisor I Angel investor

PhD Comp Sci I MSc Software Eng I BSc Com Sci

Harry Kakoulidis, BSc

Full-stack Software Engineer, Ideas Forward I Entrepreneur

BSc Economics

Nikolaos Tsoniotis, MEng

Consultant - sustainable transport, EC JRC I Startup advisor I Angel investor

MEng Electronic Engineering

Argiris Paraskevas

UX Designer, Ideas Forward

Nikiforos Zacharof, PhD

Consultant - transport emissions modelling, EC JRC & Inter. Council on Clean Transportation

PhD Mech Eng I MEng Environmental Protection

Fedra Lougiaki, PhD cand.

Analyst, Ideas Forward I Researcher, Aristotle University

PhD cand. Chemistry, MSc Biochemistry

Transport emissions

Energy industries Industry (***) Transport (**) Residential & commercial Agriculture, forestry, fisheries (****) Other (*****) Total

Fastest-**growing** source of GHG, globally

23% of EU emissions

Reduction is "*a formidable task*"

Sources:

European Environment Agency (2022) – GHG emissions of EU-27 by sector International Energy Agency (2020) – Energy Technology Perspectives

Transport chains are complex

Transport activity data value chain

Transport activity data silos

Transport activity data silos

"If you cannot measure it, you cannot improve it"

— Lord Kelvin (1824-1907)

Centralized emissions calculation

Primary activity data: Why not shared?

Data collection and exchange

Digitalisation and transparency are critical to understand the carbon footprint of logistics related activities. Ultimately companies need to have process in place for data collection and data exchange that facilitate an automated exchange of GHG logistics emissions. This requires systems in support of digital data collection and transfer technologies that will support the overall process. Currently, the reporting format, data transfer protocols and assurance requirements remain confusing for many companies. Harmonisation of the information format and transmission methods is therefore crucial. This will ultimately support companies in making business decisions in support of decarbonisation.

Requirements for effective data exchange across the transport chain are as follows:

- Data must be easily transferable from a carrier to customers/LSP and/or governments and supported by clear rules/protocols
- Type and depth of data should support the use by customers and/or governments while not compromising the carrier's commercial position
- Integration with existing platforms or ICT transfer systems in logistics
- Recognition of the role that the nature of the data input (e.g. own fleet data, carrier direct data, carrier data from programs, data from models/tools, default-factor based data) and level of detail (e.g. level of aggregation) can have on the type of decisions. This is a factor that must be borne in mind when relating reported emissions to their subsequent use.

The market should be allowed to provide the services that meet the specifications on the format of the required data and associated verification mechanism. CLECAT is of the view that there could be a

Key concern for carriers:

Business confidentiality

Source: CLECAT (2022) – CountEmissions EU: setting out a common framework on transport-related greenhouse gas emissions

Decentralized emissions calculation

Data provider

DS FREIGHT FORWARDING

International freight forwarding across EU

Specialization: fresh & frozen foods

10,000 shipments / €15m sales in 2022

Solution objectives

1. Preserving activity data sovereignty

Emissions calculated without private data disclosures

2. Facilitating emissions data sharing

Transport chain partners exchange/monetize data via IDS Connector

3. Enabling emissions data auditability

Pseudonymized emission reports on public blockchain for certifier audits + open datasets

CO2Path.io

Home Home

ID	Origin	Destination	Loaded	Delivered	Weight (kg)	Condition	Activity (tkm)	Emissions (kg)	Intensity (g/tkm)
CNS001	GR-15432	IT-28873	10/08/23	18/08/23	1000	Frigo	3000	20	12.4
CNS002	GR-76592	ES-4672	02/08/23	14/08/23	2000	Dry	2500	15	24.6
CNS003	SE-42621	DE-23156	01/08/23	08/08/23	1500	Dry	1000	5	32.5

Model-based plausibility validation

VECTO simulation system:

European Union's official reference system for the calculation of CO₂ emissions from Heavy-Duty Vehicles

Highest possible accuracy for vehicle fuel consumption estimation

Extensive team experience with VECTO

CO2Path.io emission reports

Standardised

Compliant with ISO 14083 & EN 16258

Transparent

Full visibility into calculation process + data types used

Quality-rated

Based on the quality of report's input data

Verifiable

Audit-ready with immutable data trail for external verifiers

Go-to-market

- 555,000 enterprises ¹
- 35.5M vehicles¹
- 95% of total freight transport enterprises¹
- 53% of (global) freight transport emissions²

> International road freight

- \$123B revenues (2023 f) ³
- 32% of total road freight revenues ³

Domestic road freight

- \$262B revenues (2023 f) ³
- 68% of total road freight revenues ³

Current target

Freight (transport

(EU-27)

Other freight: Maritime, Inland water, Air, Rail

• 5% of total freight transport enterprises ¹

Sources:

- ¹ DG MOVE, EU transport in figures (2022) Number of enterprises by mode of transport
- ² McKinsey, Road freight global pathways report (2022)

³ Nordic Transport Group, European Freight Forwarding Market Study (2019) – European Road Freight Market Size

Revenue model

Market positioning

Source: Carbon Accounting Market Size, Fortune Business Insights (March 2023)

Venture capital invested in carbon accounting

Help logistics professionals play their part in mitigating the climate emergency, by bringing high quality data into freight emissions reporting.

Thank you

Dimitrios Kourtesis, PhD Managing Partner, Ideas Forward dimitrios@ideasforward.com

ideasforward.com

Technology Venture studio in Thessaloniki - Greece

- Opportunity Lab: building business models
- Curiosity Lab: building technology
- Community Lab: building communities

