Data driven stock-out prediction

by | Nov 5, 2022

Application Track:

Ready Made

Code:

REACH-2022-READYMADE-MIGROS_1

Domain:

Proposed by:

MIGROS

Entity Logo:

Summary of the entity:

Migros is one of the largest FMCG retailers in Turkey. With more than 2000 stores and 30.000 employees, Migros is also the pioneer of organized retailing in Turkey. Migros today offers spacious stores in a wide range of formats and locations whose vast selection of cosmetics, stationery, glass and kitchenware, electronic appliances, book, textiles, and other items along with groceries and other necessities give it the ability to satisfy the shopping needs of its customers.

The company aims to be always the first choice of customers by providing a unique convenience and trustworthy shopping experience through its ultimate service approach, pioneer applications, broad product portfolio and family budget friendly pricing strategy.

Summary of the challenge:

In this challenge we are looking for a way to detect unknown stockouts for SKUs in a retail store using point-of-sale and operational data. The objective is to detect SKUs that have positive inventories in records but have lower sales than expected due to errors in the records or operations (such as products staying in the backroom instead of salesroom). The data consists of sales and inventory data, promotion information and inventory transactions (such as arrival to the store, inventory corrections…).

Description:

Stock-outs in retailing is one of the biggest problems as they cost lost sales and disturb the customer experience. In this challenge we are looking for a way to predict stock-outs occurring in a store using only sales and inventory movements data. Lost sales can occur because of several reasons: due to items not being in inventory, due to items not being on the shelves, due to phantom inventory (that exists solely on records but not in stores). We are looking for a data oriented approach to predict those cases based on the past patterns on sales or other inventory movements (arrival to the store, loss/damage, transfer, inventory corrections and so on).

Expected outcomes:

A data driven approach to predict potential inventory related problems that may affect sales.

How do we apply?

Read the Guidelines for Applicants

Doubts or questions? Read more about REACH on the About Us page,

have a look at our FAQ section or drop us an email at opencall@reach-incubator.eu.